Difference between revisions of "Courses/LOFO"

From LRDE

Line 16: Line 16:
 
Ces deux notions sont reliées par l'isomorphisme de Curry-Howard. Un programme est donc d'une certaine manière une forme de preuve mathématique.
 
Ces deux notions sont reliées par l'isomorphisme de Curry-Howard. Un programme est donc d'une certaine manière une forme de preuve mathématique.
 
|content=Ce cours est découpé en quatre séances :
 
|content=Ce cours est découpé en quatre séances :
* Logique propositionnelle et sa sémantique, preuves, systèmes à la Hilbert.
+
1) Logique propositionnelle et sa sémantique, preuves, systèmes à la Hilbert.
* Déduction naturelle, logique du premier ordre, normalisation.
+
2) Déduction naturelle, logique du premier ordre, normalisation.
* Lambda calcul, propriétés et applications.
+
3) Lambda calcul, propriétés et applications.
* Lambda calcul simplement typé, isomorphisme de Curry-Howard.
+
4) Lambda calcul simplement typé, isomorphisme de Curry-Howard.
|slides=https://www.lrde.epita.fr/~akim/lofo/handouts/
+
|slides=https://www.lrde.epita.fr/~adrien/notes_logi-lofo_19_20.pdf
 
}}
 
}}

Revision as of 13:27, 3 July 2020

Titre

Logique formelle

Sigle

LOFO

Enseignant

Adrien Pommellet

Période

S4, Ing1

Public

Tronc-commun

Contrôle

Partiel

Durée

12h

Optionnel

oui

Module

Sciences Générales

Prérequis

Capacité à comprendre et écrire des preuves par récurrence. Capacité à lire des formules mathématiques et à exprimer des propriétés sous forme de formule. Il est souhaitable mais pas obligatoire d'avoir suivi LOGI.

Objectifs

Ce cours présente principalement deux notions théoriques avec des applications concrètes en informatique :

  • Les systèmes de preuves, qui introduisent la notion de vérité comme construction obtenue à partir d'une série de déductions ; des logiciels de preuve comme COQ ou des langages certifiés comme l'Atelier B en dépendent.
  • Le lambda calcul, formalisme de programmation différent des machines de Turing mais tout aussi puissant, que l'on peut typer et qui sert de base à la programmation fonctionnelle.

Ces deux notions sont reliées par l'isomorphisme de Curry-Howard. Un programme est donc d'une certaine manière une forme de preuve mathématique.

Plan

Ce cours est découpé en quatre séances : 1) Logique propositionnelle et sa sémantique, preuves, systèmes à la Hilbert. 2) Déduction naturelle, logique du premier ordre, normalisation. 3) Lambda calcul, propriétés et applications. 4) Lambda calcul simplement typé, isomorphisme de Curry-Howard.

Documentation
Support
Journaux