Courses/MLRF
From LRDE
Titre |
Machine learning pour la reconnaissance des formes |
---|---|
Sigle |
MLRF |
Enseignant | |
Période |
S4, Ing2 |
Public |
Majeure, SCIA, IMAGE |
Contrôle | |
Durée |
24h |
Optionnel |
non |
Module | |
Prérequis | |
Objectifs |
Donner aux étudiants les moyens techniques, théoriques et méthodologiques nécessaires à l’optimisation dans un cadre probabiliste de systèmes modernes de vision par ordinateur pour répondre à des problèmes de détection, de segmentation, de classification et de recherche d’image. L’apprentissage artificiel (Machine Learning) est nécessaire dans de nombreux problèmes de vision par ordinateur (Computer Vision) car il permet l’optimisation dans un cadre probabiliste des paramètres d’un système en tirant profit des données disponibles. Au travers de plusieurs études de cas, les étudiants seront initiés à différentes techniques modernes permettant de résoudre des problèmes de :
Les étudiants apprendront également comment évaluer rigoureusement la performance des solutions considérées. Les étudiants acquerront alors les bases scientifiques qui leur permettront de comprendre et de réutiliser (voire d’étendre) les méthodes les plus performantes jusqu’en 2012 – date du début de l’essor de l’apprentissage profond (Deep Learning). Ces bases seront un point de départ utile pour comprendre, plus tard, les techniques les plus récentes avec un regard d’expert en analyse d’images. Les étudiants utiliseront des outils modernes en Python pour prototyper et évaluer rapidement les technique étudiées. |
Plan |
|
Documentation | |
Support | |
Journaux |