Difference between revisions of "Jobs/M2 RL 2014 problematiques-performance"
From LRDE
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{Job |
{{Job |
||
|Reference id=M2 RL 2014 problematiques-performance |
|Reference id=M2 RL 2014 problematiques-performance |
||
− | |Title=Study of |
+ | |Title=Study of performance-related issues in image analysis in a generic context |
|Dates=5 - 6 months in 2014 |
|Dates=5 - 6 months in 2014 |
||
|Research field=Image Processing |
|Research field=Image Processing |
||
|Related project=Olena |
|Related project=Olena |
||
|Advisor=Roland Levillain |
|Advisor=Roland Levillain |
||
+ | |Context=Started in 1998, the [https://www.lrde.epita.fr EPITA Research and Development Laboratory (LRDE)] is a laboratory under the administrative supervision of [http://www.epita.fr EPITA (École Pour l'Informatique et les Techniques Avancées)], a French “École d'Ingénieurs” (Engineering School). |
||
⚫ | |||
⚫ | Many software tools for image processing are designed |
||
+ | Like the lab, the team is young and dynamic; in early 2014, it is composed of ten assistant-professors, one administrator, 4 Ph.D. candidates and about ten students doing part-time research in the lab during their studies. The works in fundamental research conducted at the LRDE are organized around two themes: |
||
⚫ | |||
+ | * Pattern Recognition |
||
⚫ | Tools that seek to resolve the two previous issues (being efficient while providing a general writing via abstractions) are much more uncommon. The [[Olena]] project, developed |
||
+ | * Automata and Model Checking |
||
⚫ | |||
+ | |||
+ | In addition, all applied research efforts in the lab fall within a research line called “genericity and efficiency”. |
||
⚫ | |||
+ | |||
⚫ | Many software tools for image processing are designed with performance issues in mind, related to either the data (many images or videos, or very large ones), the context (real-time constraints, the need to obtain a response in a “reasonable” time frame), or hardware (limited processing power or memory capacity). |
||
+ | |||
⚫ | Besides, more and more software libraries for image processing are built along the lines of an advanced design work, using “abstractions” representing the various concepts of the domain (image, point, value, neighborhood, etc. ). This approach enables a high-level strategy to write image processing algorithms, which are reusable (not restricted to a single use case) and often simpler. Software frameworks from this category are mostly based on object-oriented programming or generic programming (C++ templates, Java or C# generics). |
||
+ | |||
⚫ | Tools that seek to resolve the two previous issues (being efficient while providing a general writing via abstractions) are much more uncommon. The [[Olena]] project, developed for more than fifteen years by the LRDE, proposes a library for generic image processing in C++, Milena, designed for writing reusable and efficient algorithms. It relies both on generic and object-oriented programming. The internship aims to explore ways to extend the capabilities of Milena in the field of high performance computing (in particular in “Big Data” contexts), while preserving its current generic- and abstraction-related features. |
||
⚫ | |||
|Objectives=Some working aspects include the following ideas: |
|Objectives=Some working aspects include the following ideas: |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | In |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
+ | |||
⚫ | In any case, the research work should be conducted with a reusability / genericity goal (even a partial one) of the proposed solutions in mind, for example based on an incremental refinement (“lifting”) of a first implementation. Ultimately, the goal is to actually set the first elements of a more formal set of properties and data types, in order to generalize the performance improvements mentioned above. |
||
|Contact=roland.levillain-at-lrde.epita.fr (Please mention the internship reference above when applying.) |
|Contact=roland.levillain-at-lrde.epita.fr (Please mention the internship reference above when applying.) |
||
|Compensation=800 € gross/month |
|Compensation=800 € gross/month |
||
− | |Future work opportunities=If the internship |
+ | |Future work opportunities=If you have performed the internship satisfactorily, we would like it to be followed by a PhD thesis. |
|Type=Master Internship |
|Type=Master Internship |
||
|Language=en |
|Language=en |
Latest revision as of 17:19, 8 April 2014
Study of performance-related issues in image analysis in a generic context | |
---|---|
Reference id |
M2 RL 2014 problematiques-performance |
Dates |
5 - 6 months in 2014 |
Research field |
Image Processing |
Related project | |
Advisor | |
General presentation of the field |
This internship is part of the “genericity and efficiency” research line of the laboratory. Many software tools for image processing are designed with performance issues in mind, related to either the data (many images or videos, or very large ones), the context (real-time constraints, the need to obtain a response in a “reasonable” time frame), or hardware (limited processing power or memory capacity). Besides, more and more software libraries for image processing are built along the lines of an advanced design work, using “abstractions” representing the various concepts of the domain (image, point, value, neighborhood, etc. ). This approach enables a high-level strategy to write image processing algorithms, which are reusable (not restricted to a single use case) and often simpler. Software frameworks from this category are mostly based on object-oriented programming or generic programming (C++ templates, Java or C# generics). Tools that seek to resolve the two previous issues (being efficient while providing a general writing via abstractions) are much more uncommon. The Olena project, developed for more than fifteen years by the LRDE, proposes a library for generic image processing in C++, Milena, designed for writing reusable and efficient algorithms. It relies both on generic and object-oriented programming. The internship aims to explore ways to extend the capabilities of Milena in the field of high performance computing (in particular in “Big Data” contexts), while preserving its current generic- and abstraction-related features. |
Prerequisites |
Keywords : scientific computing, Big Data, C++, parallel programming. |
Objectives |
Some working aspects include the following ideas:
In any case, the research work should be conducted with a reusability / genericity goal (even a partial one) of the proposed solutions in mind, for example based on an incremental refinement (“lifting”) of a first implementation. Ultimately, the goal is to actually set the first elements of a more formal set of properties and data types, in order to generalize the performance improvements mentioned above. |
Benefit for the candidate | |
References | |
Place | LRDE: How to get to us |
Compensation |
800 € gross/month |
Future work opportunities |
If you have performed the internship satisfactorily, we would like it to be followed by a PhD thesis. |
Contact |