Difference between revisions of "Publications/demaille.16.ciaa"

From LRDE

(Created page with "{{Publication | published = true | date = 2016-04-26 | authors = Akim Demaille | title = Multitape Rational Expressions | booktitle = Proceedings of Implementation and Applica...")
 
 
(28 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
| date = 2016-04-26
 
| date = 2016-04-26
 
| authors = Akim Demaille
 
| authors = Akim Demaille
| title = Multitape Rational Expressions
+
| title = Derived-Term Automata of Multitape Rational Expressions
 
| booktitle = Proceedings of Implementation and Application of Automata21st International Conference (CIAA'16)
 
| booktitle = Proceedings of Implementation and Application of Automata21st International Conference (CIAA'16)
  +
| editors = Yo-Sub Han, Kai Salomaa
 
| publisher = Springer
 
| publisher = Springer
| series = Lecture Notes in Computer Science
 
 
| address = Seoul, South Korea
 
| address = Seoul, South Korea
  +
| pages = 51 to 63
| abstract = We introduce (weighted) rational expressions to denote series over Cartesian products of monoids. To this endwe propose the operator mid to build multitape expressions such as (a^+∣x + b^+∣y)^*. We define expansions, which generalize the concept of derivative of a rational expression, but relieved from the need of a free monoid. We propose an algorithm based on expansions to build multitape automata from multitape expressions.
 
  +
| anurl = http://dx.doi.org/10.1007/978-3-319-40946-7_5
 
| series = Lecture Notes in Computer Science
  +
| volume = 9705
 
| abstract = We introduce (weighted) rational expressions to denote series over Cartesian products of monoids. To this end, we propose the operator <math>\mid</math> to build multitape expressions such as <math>(a^+\mid x + b^+\mid y)^*</math>. We define expansionswhich generalize the concept of derivative of a rational expression, but relieved from the need of a free monoid. We propose an algorithm based on expansions to build multitape automata from multitape expressions.
 
| lrdeprojects = Vcsn
 
| lrdeprojects = Vcsn
  +
| lrdepaper = http://www.lrde.epita.fr/dload/papers/demaille.16.ciaa.pdf
  +
| lrdereport = http://www.lrde.epita.fr/dload/papers/demaille.16.ciaa.report.pdf
 
| lrdenewsdate = 2016-04-26
 
| lrdenewsdate = 2016-04-26
| note = accepted
 
 
| type = inproceedings
 
| type = inproceedings
 
| id = demaille.16.ciaa
 
| id = demaille.16.ciaa
  +
| identifier = doi:10.1007/978-3-319-40946-7_5
 
| bibtex =
 
| bibtex =
 
@InProceedings<nowiki>{</nowiki> demaille.16.ciaa,
 
@InProceedings<nowiki>{</nowiki> demaille.16.ciaa,
 
author = <nowiki>{</nowiki>Akim Demaille<nowiki>}</nowiki>,
 
author = <nowiki>{</nowiki>Akim Demaille<nowiki>}</nowiki>,
title = <nowiki>{</nowiki>Multitape Rational Expressions<nowiki>}</nowiki>,
+
title = <nowiki>{</nowiki>Derived-Term Automata of Multitape Rational Expressions<nowiki>}</nowiki>,
 
booktitle = <nowiki>{</nowiki>Proceedings of Implementation and Application of Automata,
 
booktitle = <nowiki>{</nowiki>Proceedings of Implementation and Application of Automata,
 
21st International Conference (CIAA'16)<nowiki>}</nowiki>,
 
21st International Conference (CIAA'16)<nowiki>}</nowiki>,
 
editor = <nowiki>{</nowiki>Yo-Sub Han and Kai Salomaa<nowiki>}</nowiki>,
 
year = 2016,
 
year = 2016,
 
publisher = <nowiki>{</nowiki>Springer<nowiki>}</nowiki>,
 
publisher = <nowiki>{</nowiki>Springer<nowiki>}</nowiki>,
series = <nowiki>{</nowiki>Lecture Notes in Computer Science<nowiki>}</nowiki>,
 
 
address = <nowiki>{</nowiki>Seoul, South Korea<nowiki>}</nowiki>,
 
address = <nowiki>{</nowiki>Seoul, South Korea<nowiki>}</nowiki>,
 
pages = <nowiki>{</nowiki>51--63<nowiki>}</nowiki>,
  +
isbn = <nowiki>{</nowiki>978-3-319-40946-7<nowiki>}</nowiki>,
  +
doi = <nowiki>{</nowiki>10.1007/978-3-319-40946-7_5<nowiki>}</nowiki>,
  +
anurl = <nowiki>{</nowiki>http://dx.doi.org/10.1007/978-3-319-40946-7_5<nowiki>}</nowiki>,
  +
series = <nowiki>{</nowiki>Lecture Notes in Computer Science<nowiki>}</nowiki>,
  +
volume = 9705,
 
month = jul,
 
month = jul,
 
abstract = <nowiki>{</nowiki>We introduce (weighted) rational expressions to denote
 
abstract = <nowiki>{</nowiki>We introduce (weighted) rational expressions to denote
Line 32: Line 44:
 
expression, but relieved from the need of a free monoid. We
 
expression, but relieved from the need of a free monoid. We
 
propose an algorithm based on expansions to build multitape
 
propose an algorithm based on expansions to build multitape
automata from multitape expressions.<nowiki>}</nowiki>,
+
automata from multitape expressions.<nowiki>}</nowiki>
note = <nowiki>{</nowiki>accepted<nowiki>}</nowiki>
 
 
<nowiki>}</nowiki>
 
<nowiki>}</nowiki>
   

Latest revision as of 19:20, 5 January 2018

Abstract

We introduce (weighted) rational expressions to denote series over Cartesian products of monoids. To this end, we propose the operator to build multitape expressions such as . We define expansionswhich generalize the concept of derivative of a rational expression, but relieved from the need of a free monoid. We propose an algorithm based on expansions to build multitape automata from multitape expressions.

Documents

Bibtex (lrde.bib)

@InProceedings{	  demaille.16.ciaa,
  author	= {Akim Demaille},
  title		= {Derived-Term Automata of Multitape Rational Expressions},
  booktitle	= {Proceedings of Implementation and Application of Automata,
		  21st International Conference (CIAA'16)},
  editor	= {Yo-Sub Han and Kai Salomaa},
  year		= 2016,
  publisher	= {Springer},
  address	= {Seoul, South Korea},
  pages		= {51--63},
  isbn		= {978-3-319-40946-7},
  doi		= {10.1007/978-3-319-40946-7_5},
  anurl		= {http://dx.doi.org/10.1007/978-3-319-40946-7_5},
  series	= {Lecture Notes in Computer Science},
  volume	= 9705,
  month		= jul,
  abstract	= {We introduce (weighted) rational expressions to denote
		  series over Cartesian products of monoids. To this end, we
		  propose the operator $\mid$ to build multitape expressions
		  such as $(a^+\mid x + b^+\mid y)^*$. We define expansions,
		  which generalize the concept of derivative of a rational
		  expression, but relieved from the need of a free monoid. We
		  propose an algorithm based on expansions to build multitape
		  automata from multitape expressions.}
}