# Difference between revisions of "Publications/boutry.15.icip"

### From LRDE

Line 9: | Line 9: | ||

| lrdeprojects = Olena |
| lrdeprojects = Olena |
||

| lrdenewsdate = 2015-05-14 |
| lrdenewsdate = 2015-05-14 |
||

− | | abstract = Latecki et al. have introduced the notion of well-composed images, i.e., a class of images free from the connectivities paradox of discrete topology. Unfortunately natural and synthetic images are not a priori well-composed, usually leading to topological issues. Making any |
+ | | abstract = Latecki et al. have introduced the notion of well-composed images, i.e., a class of images free from the connectivities paradox of discrete topology. Unfortunately natural and synthetic images are not a priori well-composed, usually leading to topological issues. Making any <math>n</math>D image well-composed is interesting becauseafterwards, the classical connectivities of components are equivalent, the component boundaries satisfy the Jordan separation theorem, and so on. In this paper, we propose an algorithm able to make <math>n</math>D images well-composed without any interpolation. We illustrate on text detection the benefits of having strong topological properties. |

| lrdeinc = Publications/boutry.15.icip.inc |
| lrdeinc = Publications/boutry.15.icip.inc |
||

| lrdepaper = http://www.lrde.epita.fr/dload/papers/boutry.15.icip.pdf |
| lrdepaper = http://www.lrde.epita.fr/dload/papers/boutry.15.icip.pdf |

## Revision as of 19:19, 5 January 2018

- Authors
- Nicolas Boutry, Thierry Géraud, Laurent Najman
- Where
- Proceedings of the IEEE International Conference on Image Processing (ICIP)
- Place
- Québec City, Canada
- Type
- inproceedings
- Projects
- Olena
- Date
- 2015-05-14

## Abstract

Latecki et al. have introduced the notion of well-composed images, i.e., a class of images free from the connectivities paradox of discrete topology. Unfortunately natural and synthetic images are not a priori well-composed, usually leading to topological issues. Making any D image well-composed is interesting becauseafterwards, the classical connectivities of components are equivalent, the component boundaries satisfy the Jordan separation theorem, and so on. In this paper, we propose an algorithm able to make D images well-composed without any interpolation. We illustrate on text detection the benefits of having strong topological properties.

## Documents

The initial image:

The zero-level-set of the Laplacian:

The zero-level-set of the Laplacian (zoomed on):

The zero-level-set of the Laplacian made well-composed:

The zero-level-set of the Laplacian made well-composed (zoomed on):

The source code able to make images digitally well-composed is available here:
[src_icip_2015.tar.gz]

The source code of the proposed algorithm has been implemented using our image processing C++ library Milena, which is free software under the GNU Public License v2.

## Bibtex (lrde.bib)

@InProceedings{ boutry.15.icip, author = {Nicolas Boutry and Thierry G\'eraud and Laurent Najman}, title = {How to Make {$n$D} Images Well-Composed Without Interpolation}, booktitle = {Proceedings of the IEEE International Conference on Image Processing (ICIP)}, year = {2015}, month = sep, address = {Qu\'ebec City, Canada}, pages = {2149--2153}, abstract = {Latecki et al. have introduced the notion of well-composed images, i.e., a class of images free from the connectivities paradox of discrete topology. Unfortunately natural and synthetic images are not a priori well-composed, usually leading to topological issues. Making any $n$D image well-composed is interesting because, afterwards, the classical connectivities of components are equivalent, the component boundaries satisfy the Jordan separation theorem, and so on. In this paper, we propose an algorithm able to make $n$D images well-composed without any interpolation. We illustrate on text detection the benefits of having strong topological properties.} }