Difference between revisions of "Seminar"

From LRDE

Line 1: Line 1:
{{SeminarHeader}}
 
 
{{DISPLAYTITLE:Séminaire Performance et Généricité}}
 
{{DISPLAYTITLE:Séminaire Performance et Généricité}}
 
{{TOC|limit=2|align=right}}
 
{{TOC|limit=2|align=right}}

Revision as of 12:21, 4 February 2015


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vaucanson, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Prochaines séances

Archives (more…)

Mercredi 18 mars 2020, 11h - 12h, Amphi Masters

Diagnosis and Opacity in Partially Observable Systems

Stefan Schwoon, ENS Paris-Saclay

In a partially observable system, diagnosis is the task of detecting certain events, for instance fault occurrences. In the presence of hostile observers, on the other hand, one is interested in rendering a system opaque, i.e. making it impossible to detect certain "secret" events. The talk will present some decidability and complexity results for these two problems when the system is represented as a finite automaton or a Petri net. We then also consider the problem of active diagnosis, where the observer has some control over the system. In this context, we study problems such as the computational complexity of the synthesis problem, the memory required for the controller, and the delay between a fault occurrence and its detection by the diagnoser. The talk is based on joint work with B. Bérard, S. Haar, S. Haddad, T. Melliti, and S. Schmitz.

Stefan Schwoon studied Computer Science at the University of Hildesheim and received a PhD from the Technical University of Munich in 2002. He held the position of Scientific Assistent at the University of Stuttgart from 2002 to 2007, and at the Technical University in Munich from 2007 to 2009. He is currently Associate Professor (Maître de conférences) at Laboratoire Spécification et Vérification (LSV), ENS Paris-Saclay, and a member of the INRIA team Mexico. His research interests include model checking and diagnosis on concurrent and partially-observable systems.

http://www.lsv.fr/~schwoon/





Mercredi 12 février 2020, 10h - 11h30, Amphi 1

Informatique Quantique

Georges Uzbelger, IBM France

Dans ce séminaire, nous parlerons d'une technologie émergente qu'est l'informatique quantique, exploitant les phénomènes quantiques de l'infiniment petit. Nous verrons que, quand dans le monde de l'informatique classique, les données sont représentées par des bits valant chacun 0 ou 1 exclusivement, alors que l'informatique quantique est déroutante dans le sens où les qubits (bits quantiques) peuvent valoir simultanément 0 et 1. Afin de pouvoir appréhender cette technologie, nous rappellerons ce que sont la dualité onde/corpuscule, la superposition d'états, ainsi que intrication quantique. Nous verrons aussi comment IBM a créé le premier processeur quantique (ou QPU) quelques dizaines d'années après l'idée révolutionnaire du père de l'informatique quantique, Richard Feynman, et quels sont les défis technologiques qui en découlent. Nous verrons que l’informatique quantique offre de nouvelles perspectives dans les domaines comme la cryptographie et l'intelligence artificielle pour ne citer qu'eux. Une étude des complexités des différents algorithmes vus durant le séminaire sera évoqué. Durant cette plénière interactive, une démonstration sera réalisée via l’environnement de développement Qiskit avec accès à distance à une machine quantique IBM. Merci donc d'apporter votre ordinateur portable !

Diplômé de l’Université Paris IX Dauphine en Mathématiques et Applications Fondamentales, Georges Uzbelger est depuis 2002 ingénieur chez IBM France, en charge actuellement de prestations de consulting et de design de solutions dans le domaine de l’IA, de l’advance analytics et de l’informatique quantique. Il participe au programme IBM Quantum Experience pour le développement de l’informatique quantique et notamment du calcul et de l’algorithmique quantique. Adhérent à la SMF (Société Mathématique de France) entre autre, il enseigne également à l’Ecole Polytechnique, à Sorbonne Université (UPMC) et à l’Université Paris-Dauphine.

http://www.research.ibm.com/quantum/





Mardi 17 décembre 2019, 10h - 11h, IP12A

Learning the relationship between neighboring pixels for some vision tasks

Yongchao Xu, Associate Professor at the School of Electronic Information and Communications, HUST, China

The relationship between neighboring pixels plays an important role in many vision applications. A typical example of a relationship between neighboring pixels is the intensity order, which gives rise to some morphological tree-based image representations (e.g., Min/Max tree and tree of shapes). These trees have been shown useful for many applications, ranging from image filtering to object detection and segmentation. Yet, these intensity order based trees do not always perform well for analyzing complex natural images.  The success of deep learning in many vision tasks motivates us to resort to convolutional neural networks (CNNs) for learning such a relationship instead of relying on the simple intensity order.  As a starting point, we propose the flux or direction field representation that encodes the relationship between neighboring pixels. We then leverage CNNs to learn such a representation and develop some customized post-processings for several vision tasks, such as symmetry detection, scene text detection, generic image segmentation, and crowd counting by localization. This talk is based on [1] and [2], as well as extension of those previous works that are currently under review.

[1] Xu, Y., Wang, Y., Zhou, W., Wang, Y., Yang, Z. and Bai, X., 2019. Textfield: Learning a deep direction field for irregular scene text detection. IEEE Transactions on Image Processing. [2] Wang, Y., Xu, Y., Tsogkas, S., Bai, X., Dickinson, S. and Siddiqi, K., 2019. DeepFlux for Skeletons in the Wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Yongchao Xu received in 2010 both the engineer degree in electronics & embedded systems at Polytech Paris Sud and the master degree in signal processing & image processing at Université Paris Sud, and the Ph.D. degree in image processing and mathematical morphology at Université Paris Est in 2013. After completing his Ph.D. study at LRDE, EPITA, ESIEE Paris, and LIGM, He worked at LRDE as an assistant professor (Maître de Conférences). He is currently an Associate Professor at the School of Electronic Information and Communications, HUST. His research interests include mathematical morphology, image segmentation, medical image analysis, and deep learning.

http://www.vlrlab.net/~yxu/






Contact

Liens