A Fast and Exact Algorithm for Total Variation Minimization
From LRDE
- Authors
- Jérôme Darbon, Marc Sigelle
- Where
- Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)
- Place
- Estoril, Portugal
- Type
- inproceedings
- Publisher
- Springer-Verlag
- Projects
- Olena
- Keywords
- Image
- Date
- 2005-01-18
Abstract
This paper deals with the minimization of the total variation under a convex data fidelity term. We propose an algorithm which computes an exact minimizer of this problem. The method relies on the decomposition of an image into its level sets. Using these level sets, we map the problem into optimizations of independent binary Markov Random Fields. Binary solutions are found thanks to graph-cut techniques and we show how to derive a fast algorithm. We also study the special case when the fidelity term is the -norm. Finally we provide some experiments.
Bibtex (lrde.bib)
@InProceedings{ darbon.05.ibpria, author = {J\'er\^ome Darbon and Marc Sigelle}, title = {A Fast and Exact Algorithm for Total Variation Minimization}, booktitle = {Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA)}, publisher = {Springer-Verlag}, volume = 3522, pages = {351--359}, year = 2005, address = {Estoril, Portugal}, month = jun, abstract = {This paper deals with the minimization of the total variation under a convex data fidelity term. We propose an algorithm which computes an exact minimizer of this problem. The method relies on the decomposition of an image into its level sets. Using these level sets, we map the problem into optimizations of independent binary Markov Random Fields. Binary solutions are found thanks to graph-cut techniques and we show how to derive a fast algorithm. We also study the special case when the fidelity term is the $L^1$-norm. Finally we provide some experiments.} }