Séminaire Performance et Généricité

From LRDE

Revision as of 17:15, 13 February 2018 by Gtochon (talk | contribs) (Liens)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vcsn, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Comment venir: Contact.

Prochaines séances

Archives

Mercredi 6 mars 2019, 11h - 12h, Amphi 4

Restauration de la vision grâce aux implants rétiniens

Vincent Bismuth (GEHC)

Rendre la vue à ceux qui l’ont perdue a longtemps été considéré comme un sujet réservé à la science-fiction. Cependant, sur les vingt dernières années les efforts intensifiés dans le domaine des prothèses visuelles ont abouti à des avancées significatives, et plusieurs centaines de patients dans le monde ont reçu de tels dispositifs. Ce séminaire présentera brièvement le domaine des prothèses rétiniennes avec une focalisation particulière sur les aspects de traitement d’image. Nous exposerons les principales approches, les limitations connues et les résultats.

Vincent Bismuth mène une carrière dans le domaine du traitement d’image pour les dispositifs médicaux. Il a contribué pendant plus de dix ans au développement d’algorithmes de traitement d’image et de vidéos pour les procédures chirurgicales interventionnelles chez GE Healthcare. Il s’est ensuite consacré pendant quatre ans à la conception de systèmes de restauration visuelle pour les malvoyants dans la start-up Pixium Vision. Fin 2018, il a rejoint la division mammographie de GE Healthcare où il mène des développements en traitement d’image.



Vendredi 14 décembre 2018, 11h-12h, Amphi IP12A

Toward myocardium perfusion from X-ray CT

Clara Jaquet (ESIEE Marne-la-Vallée)

Recent advances in medical image computing have resulted in automated systems that closely assist physicians in patient therapy. Computational and personalized patient models benefit diagnosis, prognosis and treatment planning, with a decreased risk for the patient, as well as potentially lower cost. HeartFlow Inc. is a successful example of a company providing such a service in the cardiovascular context. Based on patient-specific vascular model extracted from X-ray CT images, they identify functionally significant disease in large coronary arteries. Their combined anatomical and functional analysis is nonetheless limited by the image resolution. At the downstream scale, a functional exam called Myocardium Perfusion Imaging (MPI) highlights myocardium regions with blood flow deficit. However, MPI does not functionally relate perfusion to the upstream coronary disease. The goal of our project is to build the functional bridge between coronary and myocardium. To this aim we propose an anatomical and functional extrapolation. We produce an innovative vascular network generation method extending the coronary model down to the microvasculature. In the resulting vascular model, we compute a functional analysis pipeline to simulate flow from large coronaries to the myocardium, and to enable comparison with MPI ground-truth data.

After completing a technological university degree in biology at Creteil, Clara Jaquet obtained the diploma of biomedical engineer from ISBS (Bio-Sciences Institute) in 2015. She worked for one year at HeartFlow Inc, California, before starting a PhD at ESIEE, Université Paris-Est, within the LIGM laboratory, on a research project jointly with the same company.



Mercredi 4 juillet 2018, 11h-12h, Amphi IP11

Y a-t-il une théorie de la détection des anomalies dans les images digitales?

Jean-Michel Morel (École Normale Supérieure Paris-Saclay)

Dans ce travail en collaboration avec Axel Davy, Mauricio Delbracio et Thibaud Ehret, je passerai en revue les classes d'algorithmes dont le but est de détecter des anomalies dans les images digitales. Ces détecteurs répondent au difficile problème de trouver automatiquement des exceptions dans des images de fond, qui peuvent être aussi diverses qu'un tissu ou une mammographie. Des méthodes de détection ont été proposées par milliers car chaque problème nécessite un modèle de fond différent. En analysant les approches existantes, nous montrerons que le problème peut être réduit à la détection d'anomalies dans les images résiduelles (extraites de l'image cible) dans lesquelles prédominent le bruit et les anomalies. Ainsi, le problème général et impossible de la modélisation d'un fond arbitraire est remplacé par celui de modèliser un bruit. Or un modèle de bruit permet le calcul de seuils de détection rigoureux. L'approche au problème peut donc être non supervisée et fonctionner sur des images arbitraires. Nous illustrerons l'usage de la théorie de détection dite a contrario, qui évite la sur-détection en fixant des seuils de détection prenant en compte la multiplicité des tests.

Mathématicien de formation, docteur de l'Université Pierre et Marie Curie, Assistant à Marseille-Luminy, maître de conférences et professeur à l'Université Paris-Dauphine puis à l'ENS Cachan, JMM a fait ses premiers travaux sur les équations aux dérivées partielles non-linéaires et les méthodes variationnelles. Il s'est ensuite consacré au développement d'outils mathématiques pour le traitement et l'analyse d'images et la modélisation de la perception visuelle.

https://sites.google.com/site/jeanmichelmorelcmlaenscachan/



more…


Contact